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Symmetry analysis of cross-circular and parallel-circular Raman optical activity
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Raman scattering with regard to circularly polarized incident and scattered lights is closely related to the
circular activity of a given system. We investigate the symmetry of its activity, called the cross-circular and
parallel-circular Raman optical activity. The analysis is systematically performed with the magnetic point groups,
and it indicates that the response allows for a useful diagnosis of the symmetry of materials such as chirality and
(magneto)axiality. It is also shown that the Stokes and anti-Stokes processes are related to each other by the
conserved antiunitary symmetry, which can be either the time-reversal operation or the combination of time-
reversal and mirror reflection.
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I. INTRODUCTION

Raman scattering—light scattering with a slight frequency
shift—is one of the most powerful probes of materials. The
response serves to characterize elementary excitations such
as magnons and excitons, and it has been applied to a broad
range of fields [1,2]. For instance, the Raman spectroscopy of
magnetic materials points to the spectral weight of the state
and the electrical activity of magnetic excitations [3–5]. Re-
cent studies have revealed that spectroscopy provides a deeper
insight into spontaneous symmetry breaking when combined
with control of the polarization of light. It has been shown
that Raman spectroscopy can be used to investigate the order
parameter and its coupling to the structural and electronic
properties of microscaled samples such as van der Waals
materials by using circularly polarized and crossed linearly
polarized lights [6–11]. In particular, the cross-circular and
parallel-circular Raman spectroscopy of our focus is an estab-
lished method for corroborating the phase of matter.

Figure 1 depicts the setup of cross-circular and parallel-
circular Raman spectroscopy in backward scattering ge-
ometry. The activity, namely cross- and parallel-circular
Raman optical activities (CCROA, PCROA), is found in
ferromagnetic materials [10,12,13], nonmagnetic but mirror-
asymmetric systems [14–18], and those with chiral structures
[19–21].1 In light of the microscopic mechanism, these Ra-
man optical activities (ROA), termed dual-circular ROA [23],
are related to antisymmetric Raman scattering [24,25] and
vibronic Raman optical activity [26–28] stemming from the
resonant particle-hole excitations and symmetry breaking.

*Contact author: hikaru-watanabe@g.ecc.u-tokyo.ac.jp
1The parallel-circular and cross-circular optical activities are also

referred to as activities regarding in-phase dual circular polarization
and out-of-phase dual circular polarization, respectively [22].

Only recently, the Raman spectroscopic study in Ref. [29]
clarified that conserved time-reversal symmetry is tied to the
relationship between Stokes and anti-Stokes processes, which
refer, respectively, to the emission and absorption of elemen-
tary excitation during light scattering. Experimental evidence
implies that dual-circular Raman spectroscopy allows us to
identify the symmetry, including that of the time-reversal op-
eration with which we are concerned. However, a systematic
symmetry analysis has not been presented.

In this work, we present a symmetry analysis of dual-
circular ROA. The classification based on magnetic point
groups allows us to identify materials with these ROA, and
it points to the importance of antiunitary symmetry. Although
prior studies tabulated the symmetry-adapted Raman response
[30,31], our analysis shows that magnetic symmetry can be
used to identify the relationship between Stokes and anti-
Stokes processes (creation and annihilation of elementary
excitations during light scattering). The classification is based
on the magnetic Laue, achiral, and chiral classes, providing a
diagnosis of quantum materials manifesting exotic symmetry
breaking.

The outline of the paper is as follows. Section II introduces
the setup we are interested in, and it explains the symmetry
constraints on the Raman-scattering intensity. In Secs. III and
IV, we classify the CCROA characteristics of centrosym-
metric and noncentrosymmetric materials, respectively. The
classification can work in the case of PCROA as well. We
discuss the CCROA and PCROA of cubic systems in Sec. V,
while the preceding sections are dedicated to an analysis of
noncubic crystals. We summarize our work and comment on
its implications in Sec. VI.

II. SETUP

We present the symmetry analysis of the (spontaneous)
Raman scattering process. Let the light be parametrized by
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(eX , ωX , qX ), where e is the polarization vector, ω is the
frequency, and q is the wave vector (X = i for the incident
light and X = f for the scattered light). In the following, we
consider the Raman scattering process concerning an elemen-
tary excitation φ(δω, k) such as a phonon and a magnon. The
scattering intensities are expressed by [1]

U ∝ ∣∣e†
f χ̂ei

∣∣2
nS

φ (δω, k; O) (1)

for the Stokes process (ωi > ωs) and

U ∝ ∣∣e†
f ξ̂ei

∣∣2
nAS

φ (δω, k; O) (2)

for the anti-Stokes process (ωi < ωs). Note that the energy
and momentum conservations hold as ωi = ωf ± δω and qi =
qf ± k for the Stokes and anti-Stokes processes. χ̂ and ξ̂ are
the nonlinear susceptibilities that describe the emission and
absorption of φ during the light scattering process. nS

φ and
nAS

φ are the power spectra denoting the thermal population of
φ. The power spectra depend on O, that is, the property of
the target material such as crystal structure and spontaneous
order. For simplicity, we neglected other prefactors such as
refractive indices by considering small detuning |δω| � |ω|.
The symmetry of light-matter interaction is built into the
nonlinear susceptibilities. Let us consider χ̂ written with its
parameter dependence as

χab(ωi, qi; δω, k;S ) = 〈
ef

a, ωf, qf; φ(δω, k)
∣∣S

∣∣ ei
b, ωi, qi

〉
.

(3)

The operator S = S (O) denotes the scattering process with its
implicit dependence on O.

The polarization state of light is defined with the circular
coordinates, i.e., eR = (1, i, 0)/

√
2 and eL = (1,−i, 0)/

√
2

for the right-handed and left-handed circularly polarized
lights. As a result, the components of χ̂ are written down by
such as χRL. The circular polarization is given according to
the observatory frame, not by the helicity of light (see Fig. 1).
Then, we define the cross-circular and parallel-circular Raman
optical activities by the difference of the intensities between
(ei, ef ) = (eR, eL) and (ei, ef ) = (eL, eR) in the cross-circular
arrangement [Fig. 1(a)], and that between (ei, ef ) = (eR, eR)
and (ei, ef ) = (eL, eL) in the parallel-circular arrangement
[Fig. 1(b)], respectively.

Specifically, following reported experimental works, we
consider the backward reflection geometry, where the light
perpendicularly incident on the sample surface is antiparallel
to the scattered light (qi = qiẑ, qf = −qiẑ). We aim to identify
the relation between dual-circular Raman optical activity and
the bulk symmetry of a given material. To eliminate spurious
effects such as the birefringence effect and misalignment of
the incident direction from the optical axes [32–34], we as-
sume that the light is propagating along the principal axis ẑ
of the system. We also assume that the system is noncubic,
while we present the symmetry considerations for the cubic
point groups later (Sec. V).2

Let us consider the symmetry constraint on the nonlinear
susceptibilities χab and ξab. Since we are interested in the

2In the case of orthorhombic crystals, there is an ambiguity in
choosing the axis from x̂, ŷ, ẑ. We take the ẑ axis in this work, but
this specific choice does not affect the conclusion.

FIG. 1. Experimental setup for measuring (a) the cross-circular
Raman optical activity and (b) the parallel-circular Raman optical
activity. The orange-colored arrows denote incident and reflected
lights. The circular polarization is defined by the rotation direction of
the photoelectric field, colored in orange and cyan for right-handed
and left-handed polarizations, in a plane fixed in the observatory
frame. The optical activities are defined by the difference in the
measured quantities between the left and right panels in each of
(a) and (b).

backscattering geometry, it suffices to consider an operation
g that does not rotate the incident plane, i.e., the symmetry
constraints originate from the space-inversion (g = I), the
n-fold rotation normal to the incident plane (g = n), the
twofold rotation parallel to the incident plane (g = 2⊥),
time-reversal operation (g = θ ), and combinations of the
aforementioned operations such as g = θ I .

First, we consider the space-inversion operation. The sus-
ceptibility χab for the Stokes process is transformed as

χab(ωi, qi; δω, k;S )

= 〈
ef

a, ωf, qf; φ(δω, k)
∣∣S

∣∣ ei
b, ωi, qi

〉
(4)

= 〈
Îef

a, ωf,−qf; Îφ(δω, k)
∣∣ ÎS Î−1

∣∣ Îei
b, ωi,−qi

〉
(5)

= ρI
〈
ef

a, ωf,−qf; φ(δω,−k)
∣∣ ÎS Î−1

∣∣ ei
b, ωi,−qi

〉
(6)

= ρIχab(ωi,−qi; δω,−k; ÎS Î−1), (7)

where ρI denotes the I parity of φ. If ÎS Î−1 = S (ÎOÎ−1) =
S (O) holds due to the I symmetry of the system, the scattering
event is nonreciprocal, as is evident from the relation

∣∣e†
f χ̂ (ωi, qi; δω, k;S )ei

∣∣2 = ∣∣e†
f χ̂ (ωi,−qi; δω,−k;S )ei

∣∣2
,

(8)

where the right-hand side denotes the scattering event whose
experimental arrangement is the space-inversion (I) image
of the original configuration. The total scattering intensity
[Eq. (1)] is also nonreciprocal because the I symmetry of O
leads to

nS
φ (δω, k; O) = nS

φ (δω,−k; ÎOÎ−1) = nS
φ (δω,−k; O). (9)
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The purely nonreciprocal property does not hold in
I -broken systems. One can decompose the scattering intensity
into the nonreciprocal and reciprocal parts as

∣∣e†
f χ̂ (ωi, qi; δω, k;S )ei

∣∣2
nS

φ (δω, k; O)

= 1
2

{∣∣e†
f χ̂ (ωi, qi; δω, k;S )ei

∣∣2
nS

φ (δω, k; O)

+ ∣∣e†
f χ̂ (ωi,−qi; δω,−k;S )ei

∣∣2
nS

φ (δω,−k; O)
}

+ 1
2

{∣∣e†
f χ̂ (ωi, qi; δω, k;S )ei

∣∣2
nS

φ (δω, k; O)

− ∣∣e†
f χ̂ (ωi,−qi; δω,−k;S )ei

∣∣2
nS

φ (δω,−k; O)
}
. (10)

The first line is nonreciprocal, and the second line is the
reciprocal contribution arising from the I symmetry breaking.
By using the I -parity characterization, we define the recipro-
cal and nonreciprocal dual-circular ROA. For instance, when
CCROA of the Stokes process (ωi > ωs) is given by

CC(ωi, qi; δω, k; O)

≡ {∣∣χLR(ωi, qi; δω, k;S )
∣∣2 − ∣∣χRL(ωi, qi; δω, k;S )

∣∣2}

× nS
φ (δω, k; O), (11)

the nonreciprocal and even-parity contribution is given by

CC+(ωi, δω, O) ≡ 1
2

{
CC(ωi, qi; δω, k; O)

+ CC(ωi,−qi; δω,−k; O)
}
, (12)

while the reciprocal and odd-parity part is

CC−(ωi, δω, O) ≡ 1
2

{
CC(ωi, qi; δω, k; O)

− CC(ωi,−qi; δω,−k; O)
}
. (13)

PCROA of the Stokes process is defined by

PC(ωi, qi; δω, k; O) ≡ {∣∣χRR(ωi, qiẑ; δω, k;S )
∣∣2

− ∣∣χLL(ωi, qiẑ; δω, k;S )
∣∣2}

× nS
φ (δω, k; O), (14)

and its even-parity (PC+) and odd-parity (PC−) terms are
obtained in a similar manner to the case of CCROA. Note that
the odd-parity dual-circular ROA (CC− and PC−) vanishes if
ÎOÎ−1 = O.

The symmetry analysis of χ̂ is similarly performed in the
case of another unitary operation. The important consequence
is drawn from the mirror operation m⊥, that is, the mirror
reflection with respect to the incident plane of light. The
operation interchanges the circular polarization of light as
m̂⊥eR = eL, m̂⊥eL = eR. Thus, if the system is m⊥-symmetric,
dual-circular ROA is forbidden, e.g., CCROA vanishes as

CCX (ωi, δω, O) = −CCX (ωi, δω, O) = 0 (15)

for X = ±. As a result, the systems in which we are interested
are those that lack m⊥ symmetry. The m⊥ breaking occurs
with or without the simultaneous I symmetry breaking, which
will be discussed in Secs. III and IV, respectively.

Next, we consider the time-reversal (θ ) operation. The
nonlinear susceptibility χab undergoes the transformation as

χab(ωi, qi; δω, k;S )

= 〈
θ̂ei

b, ωi,−qi

∣∣ θ̂S†θ̂−1
∣∣ θ̂ef

a, ωf,−qf; θ̂φ(δω, k)
〉

(16)

= 〈
ei

b
, ωi,−qi

∣∣S
∣∣ ef

a, ωf,−qf; φ(δω,−k)
〉

(17)

= ξba(ωf, qf; δω, k;S ), (18)

where eb ≡ θeb, S ≡ θ̂S†θ̂−1, and φ = θφ. The operator S ,
that is, the θ -partner of S , does not violate the causality but
shows the opposite polarity in its time-reversal-odd properties
such as magnetization [35]. Following Ref. [36], it is shown
that the power spectra of φ and φ are related as

fB(δω)nS
φ (δω, k; O) = {1 + fB(δω)}nAS

φ
(δω,−k; O), (19)

with the Bose-Einstein distribution function fB(δω) and O =
θ̂Oθ̂−1. As a result, the θ operation relates the Stokes and
anti-Stokes Raman scattering intensities whose frequency
of incident light is ωi and ωf = ωi − δω, as clarified in
Refs. [2,36]. In terms of CCROA, considering eR = θ̂eL and
eL = θ̂eR, we obtain the relation

CC(ωi, qi; δω, k; O)

= 1 + fB(δω)

fB(δω)
CC(ωf,−qf; −δω,−k; O), (20)

where CCROA with −δω < 0 (right-hand side) is defined by
the anti-Stokes scattering intensities as

CC(ωf,−qf; −δω,−k; O) = {∣∣ξLR(ωf,−qf; δω,−k;S )
∣∣2

− ∣∣ξRL(ωf,−qf; δω,−k;S )
∣∣2}

× nAS
φ

(δω,−k; O). (21)

Since the detuning frequency δω = |ωi − ωf| is much smaller
than the frequency of light ωi, we may approximate
Eq. (20) as

CC(ωi, qi; δω, k; O) ≈ 1 + fB(δω)

fB(δω)
CC(ωi, qi; −δω,−k; O),

(22)

which indicates the symmetry of CCROA in the Stokes and
anti-Stokes processes whose systems are parametrized by O
and O, respectively. We also used qf = −qi.

If the system is θ -symmetric, O = O holds, result-
ing in the same signs between the Stokes and anti-Stokes
CCROA as

CC(ωi, qi; δω, k; O) ≈ 1 + fB(δω)

fB(δω)
CC(ωi, qi; −δω,−k; O).

(23)

Furthermore, the combined operation of θ and m⊥ leads
to the relation complementary to Eq. (20). In the case of
CCROA, the following relation is obtained:

CC(ωi, qi; δω, k; O)

= −1 + fB(δω)

fB(δω)
CC(ωf,−qf; −δω,−k; O

′
) (24)

≈ −1 + fB(δω)

fB(δω)
CC(ωi, qi; −δω,−k; O

′
), (25)

where O
′ = θ̂m̂⊥O†(θ̂m̂⊥)−1. As a result, a θm⊥-symmetric

system may show Stokes and anti-Stokes CCROA with op-
posite signs, which is in stark contrast to the θ -symmetric
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systems. Note that the θm⊥-symmetric part of CCROA is for-
bidden if the system also respects the θ symmetry because of
the conserved m⊥ symmetry [see Eq. (15)]. Thus, the obtained
contribution is unique to θ -broken systems.

To summarize, CCROA consists of four contributions as
follows. First, it is divided into the even- and odd-parity
parts as

CC+(ωi, δω, O) + CC−(ωi, δω, O). (26)

Each part is further classified into the θ -even and θ -odd
contributions, which manifest the same (symmetric) and
opposite (antisymmetric) signs between the Stokes and anti-
Stokes signals, respectively. In light of the θ parity, CCX is
decomposed as

CCX (ωi, δω, O) = CC s
X (ωi, δω, O) + CC a

X (ωi, δω, O),

(27)

where CC s
+ is θ -even (θm⊥-odd) and CC a

+ is θ -odd (θm⊥-
even).

Following the parallel discussions, PCROA is classified by
the parity with respect to the I and θ operations. PCROA,
however, differs from CCROA in terms of the Stokes and
anti-Stokes symmetries ensured by the θ or θm⊥ symmetry;
in θ -symmetric systems,

PC(ωi, qi; δω, k; O)

≈ −1 + fB(δω)

fB(δω)
PC(ωi, qi; −δω,−k; O), (28)

exhibiting the opposite signs between the emission and ab-
sorption processes. On the other hand, if the θm⊥ symmetry
is intact, the following relation holds:

PC(ωi, qi; δω, k; O) ≈ 1 + fB(δω)

fB(δω)
PC(ωi, qi; −δω,−k; O).

(29)
Then, the θ -even term is labeled by the antisymmetric PCROA
(PC a

X ), while the θ -odd term is labeled by the symmetric part
(PC s

X ).
As a result, the symmetry between the Stokes and anti-

Stokes signals is contrasting between the θ -symmetric system
and θ -violating but θm⊥-conserving system. It implies that
careful observation of Stokes and anti-Stokes signals enables
us to identify the antiunitary symmetry in materials. Note that,
when both the θ and θm⊥ symmetries are broken, both the
symmetric and antisymmetric components are allowed. Sim-
ilar arguments are found in Ref. [37] investigating CCROA
and PCROA of the chiral molecules as well as in discus-
sions concerning another type of ROA for the odd-parity and
θ -even [38,39] and the even-parity and θ -odd cases [40]. On
the other hand, our symmetry analysis further generalizes their
discussions to cover more diverse cases, e.g., the even-parity
and θ -even or odd-parity and θ -odd dual-circular ROA, which
are not realized in molecular gas and solution. In the following
sections, however, we generalize their results from the view-
point of symmetry and classify all the magnetic point groups
in terms of the I and θ parts of CCROA and PCROA.

III. EVEN-PARITY CROSS-CIRCULAR RAMAN
OPTICAL ACTIVITY

We consider the even-parity CCROA (CC+) to delve
into the symmetry of the Raman scattering process. The
I-operation constraint [Eq. (7)] leads to the relation

CC+(ω, δω, O) = CC+(ω, δω, IOI−1). (30)

Thus, the even-parity part is identical between the original
system (O) and its inversion motif (IOI−1), after which the
point group of the target material G shows the same CC+
symmetry as that of the point group enhanced by the space-
inversion operation G ∪ IG.

The classification of CC+ is therefore given by the Laue
class, a series of point groups that are merged into the
same group after the inversion-operation enhancement. For
instance, the trigonal point groups are classified into the Laue
classes 3̄ and 3̄m. They are explicitly given as

3̄ = {
3, 3̄

}
, 3̄m = {

32, 3m, 3̄m
}
.

The former class does not show the m⊥ symmetry, while the
latter does. As a result, the even-parity CCROA is allowed
in the 3̄-class materials, while it is forbidden in the 3̄m-class
materials.

Furthermore, Eqs. (22) and (25) imply that the antiunitary
operation relates the CC+ of the Stokes process with that of
the anti-Stokes process. Thus, it is convenient to classify the
response in terms of the magnetic point groups. 122 magnetic
point groups are classified into the magnetic-group analog of
the Laue class, that is, the magnetic Laue class. Similarly to
the magnetic point groups, the magnetic Laue class is defined
by the series of magnetic point groups merged by the space-
inversion operation. The magnetic Laue classes are classified
into three types as in the case of magnetic point groups:
colorless, gray, and black-white Laue classes. The colorless
class does not have any antiunitary element like θ .

The gray and black-white Laue classes for trigonal systems
are obtained as

3̄1′ = {
31′, 3̄1′, 3̄′},

3̄m1′ = {
321′, 3m1′, 3̄m1′, 3̄′m, 3̄m′},

3̄m′ = {
32′, 3m′, 3̄m′}.

Note that the gray Laue class can cover black-white point
groups. For instance, the magnetic point group 3̄′ is included
in the gray Laue class 3̄1′. We obtained the five magnetic Laue
classes for the trigonal system in total. Due to the m⊥ symme-
try, the classes 3̄m and 3̄m1′ do not have activity concerning
CC+, while the rest of the classes (3̄, 3̄1′, 3̄m′) do.

For the gray Laue class 3̄1′, CCROA is attributed to
CC s

+ because of the θ symmetry. Materials belonging to this
class are found in a series of so-called ferroaxial (ferrorota-
tional) materials where the ferroaxial vector A, a θ -even axial
vector implying the m⊥-symmetry violation, can be present
due to their crystal structures or structural phase transition
[41–47]. Candidate materials undergoing the ferroaxial phase
transition include RbFe(MoO4)2 [44,48,49], K2Zr(PO4)2

[44,45], NiTiO3 [50], MnTiO3 [51,52], Ca5Ir3O12 [53–55],
Na2BaM(PO4)2 [56,57], van der Waals materials in the
charge-density-wave phase [14–17,58], and so on. Being
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consistent with the symmetry analysis, the same sign of the
CCROA signals between the Stokes and anti-Stokes signals
has been observed [29].

On the other hand, the black-white Laue class 3̄m′ al-
lows for the θ -odd and antisymmetric part of the even-parity
CCROA denoted by CC a

+. The response is not admixed with
the θ -even counterpart CC s

+ because of the θm⊥ symmetry.
The black-white Laue class shows the magnetoaxial sym-
metry whose unitary symmetry is the same as that of the
ferroaxial system, but θ symmetry is not kept without combin-
ing with the m⊥ or 2⊥ operation. The magnetoaxial symmetry
is found in ferromagnetic systems. Experimental observations
have been made in ferromagnets [10,12,13] and systems under
the external magnetic field [59,60]. Note that the activity can
be present in not only the ferromagnets but also the antiferro-
magnets manifesting the magnetoaxial symmetry, like Mn3Sn
[61,62]. Both the θ -even and θ -odd CC+ activities coexist in
the colorless Laue class 3̄.

The classification based on the (noncubic) magnetic Laue
class is completed in Table I. Some of the black-white Laue
classes allow for both CC s

+ and CC a
+ because of the ferroaxial

motif of their crystal structure.

IV. ODD-PARITY CROSS-CIRCULAR RAMAN
OPTICAL ACTIVITY

The odd-parity CCROA (CC−) undergoes the I -operation
transformation as

CC−(ω, δω, O) = −CC−(ω, δω, IOI−1). (31)

Combining the constraint from the out-of-plane mirror reflec-
tion m⊥, the odd-parity CCROA does not differ in systems
with O and with its rotation image 2⊥O2−1

⊥ (2⊥ = I × m⊥);

CC−(ω, δω, O) = CC−(ω, δω, 2⊥O2−1
⊥ ). (32)

In conjunction with discussions on the even-parity CCROA,
let us make use of the class of the point groups merged by the
out-of-plane twofold rotation.

For instance, the magnetic point groups for trigonal sys-
tems are classified into the five classes

32 = {3, 32}, (33)

3̄m = {
3m, 3̄, 3̄m

}
, (34)

321′ = {
31′, 321′, 32′}, (35)

3̄m1′ = {
3m1′, 3̄1′, 3̄m1′, 3̄m′, 3̄′m

}
, (36)

3̄′m′ = {
3̄′, 3m′, 3̄′m′}. (37)

The obtained classes are as follows. The chiral class 321′ has θ

symmetry but no improper rotation and is characterized by the
θ -even pseudoscalar [63]. The black-white class 3̄′m′ also has
no improper rotation in its unitary operations but conserves
the θ I symmetry, which forbids the θ -even pseudoscalar. On
the other hand, the θ -odd and θ I -even pseudoscalar, namely
magnetic chirality, is allowed in 3̄′m′. The chiral class 321′
is characterized by CC s

−, while the 3̄′m′ in the magnetic chiral
class allows for only CC a

− because the preserved θ I symmetry
forbids the θ -even CCROA (CC s

−). Two types of odd-parity

TABLE I. Classification of the even-parity cross-circular Raman
optical activity (CC+) by magnetic Laue class. Each class is labeled
by the θ -even and θ -odd CCROA; e.g., (×,�) denotes no θ -even
CCROA but allowed θ -odd CCROA. The magnetic Laue class is
comprised of magnetic point groups (M = G or M = G ∪ θgG) in
which unitary operations g form the group G and antiunitary oper-
ations are given by θgG. CCROA with the superscript “∗” denotes
what may be admixed with the birefringence effect.

Laue class CCROA M G g

(colorless Laue class)
1̄ (�,�)∗ 1 1

1̄ 1̄
2/m (�,�)∗ 2 2

m m
2/m 2/m

mmm (×,×) 2mm 2mm
222 222

mmm mmm
3̄ (�, �) 3 3

3̄ 3̄
3̄m (×,×) 32 32

3m 3m
3̄m 3̄m

4/m (�, �) 4 4
4̄ 4̄

4/m 4/m
6/m (�, �) 6 6

6̄ 6̄
6/m 6/m

4/mmmm (×,×) 422 422
4mm 4mm
4̄2m 4̄2m

4/mmm 4/mmm
6/mmmm (×,×) 622 622

6mm 6mm
6̄2m 6̄2m

6/mmm 6/mmm

(gray and black-white Laue classes)
1̄1′ (�, ×)∗ 1′ 1 1

1̄1′ 1̄ 1
1̄′ 1 1̄

2/m1′ (�, ×)∗ 21′ 2 1
m1′ m 1

2/m1′ 2/m 1
2/m′ 2 m
2′/m m 2

2′/m′ (�,�)∗ m′ 1 m
2′ 1 2

2′/m′ 1̄ 2
mmm1′ (×,×) 2mm1′ 2mm 1

2221′ 222 1
mmm1′ mmm 1
m′m′m′ 222 1̄
m′mm 2mm 1̄

m′mm (×, �) 2′2′2 2 1
m′m′2 2 m
m′m2′ m 2
m′mm 2/m 2

3̄1′ (�, ×) 31′ 3 1
3̄1′ 3̄ 1
3̄′ 3 1̄
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TABLE I. (Continued.)

Laue class CCROA M G g

3̄m1′ (×,×) 321′ 32 1
3m1′ 3m 1
3̄m1′ 3̄m 1
3̄′m 3m 1̄
3̄′m′ 32 1̄

3̄m′ (×, �) 32′ 3 2⊥
3m′ 3 m⊥
3̄m′ 3̄ m⊥

4/m1′ (�, ×) 41′ 4 1
4̄1′ 4̄ 1

4/m1′ 4/m 1
4/m′ 4 1̄
4′/m′ 4̄ 1̄

4′/m (�, �) 4′ 2 4
4̄′ 2 4̄

4′/m 2/m 4̄
6/m1′ (�, ×) 61′ 6 1

6̄1′ 6̄ 1
6/m1′ 6/m 1
6/m′ 6 1̄
6′/m 6̄ 1̄

6′/m′ (�, �) 6̄′ 3 m
6′ 3 2

6′/m′ 3̄ 2
4/mmm1′ (×,×) 4221′ 422 1

4mm1′ 4mm 1
4̄2m1′ 4̄2m 1

4/mmm1′ 4/mmm 1
4/m′m′m′ 422 1̄
4/m′mm 4mm 1̄
4′/m′m′m 4̄2m 1̄

4′/mmm′ (×,×) 4′22′ 222 2⊥
4′mm′ 2mm 2⊥
4̄′2m′ 222 m⊥
4̄′2′m 2mm m⊥

4′/mmm′ mmm 2⊥
4/mm′m′ (×, �) 4m′m′ 4 m⊥

42′2′ 4 2⊥
4̄2′m′ 4̄ m⊥

4/mm′m′ 4/m 2⊥
6/mmm1′ (×,×) 6221′ 622 1

6mm1′ 6mm 1
6̄2m1′ 6̄2m 1

6/mmm1′ 6/mmm 1
6′/mmm′ 6̄m2 1̄
6/m′m′m′ 622 1̄
6/m′mm 6mm 1̄

6/mm′m′ (×, �) 6̄m′2′ 6̄ 2⊥
6̄′m′2 32 m⊥
62′2′ 6 2⊥
6m′m′ 6 m⊥

6/mm′m′ 6/m m⊥
6′/m′m′m (×,×) 6̄′m2′ 3m 2⊥

6′2′2 32 2⊥
6′m′m 32 m⊥

6′/m′m′m 3̄m 2

CCROA are concurrently allowed in the colorless class 32,
which shows the chirality as well as the magnetic chirality
and hence can be called the composite-chiral class.

CCROA for the chiral class has been confirmed in systems
with chiral motifs such as the chiral solids and molecules
[19,21–23,64]. The Stokes and anti-Stokes parts of CCROA
observed in [19,21] are consistent with the formula for CC s

−
[38,39]. On the other hand, they show the opposite signs in
materials belonging to the magnetic chiral class, such as the
θ I -symmetric magnets, Cr2O3, even-layered MnBi2Te4, and
so on [65].

In contrast to the noncentrosymmetric classes, the class
3̄m1′ is achiral and shows θ symmetry and improper rotation
symmetries. Finally, the colorless class 3̄m similarly shows
improper rotation symmetry without any antiunitary sym-
metry such as θ , implying magnetic achiral symmetry. The
achiral and magnetoachiral classes do not show the odd-parity
CCROA due to their m⊥ or I symmetry.

We show the classification table of CC− in Table II for
the noncubic magnetic point groups. Supposing that the sym-
metry of a magnetic point group is enhanced as long as its
holohedry is maintained [66], we obtained each class by using
the n-fold (g = n) and twofold (g = 2⊥) rotations, which are
parallel and perpendicular to the principal axis, respectively.

We also show a summary of CCROA and PCROA in Fig. 2.
The response is divided into four types in terms of the parity
under the I and θ operations. Note that, similarly to the case
of CCROA, PCROA is classified based on the magnetic Laue
and a series of chiral and achiral classes. Different types of
ROA can be admixed with each other in those with signif-
icant symmetry violations; e.g., in the case of the θ -even
CCROA, a chiral and ferroaxial crystal can host both CC s

+ and
CC s

− [18].

V. CCROA AND PCROA OF CUBIC SYSTEMS

We did not perform a symmetry analysis for the cubic
systems in the previous sections because the primary direc-
tion cannot be chosen without ambiguity. Let us take several
incident directions and consider the symmetry of CCROA for
cubic systems in the normal reflection geometry. The symme-
try of PCROA can be derived from that of CCROA.

To prevent the response from being admixed with the bire-
fringence effect, the incident direction qi is taken to be the
high symmetry rotation axes with the n-fold rotation sym-
metry (n � 3). The candidates are [001], [111], and their
crystallographically equivalent axes of the cubic systems in
the conventional setting. We consider the even-parity and odd-
parity CCROA for the [001] and [111] incident directions as
follows.

In the case of qi = [001] incidence, CCROA is forbidden in
the presence of the m⊥ symmetry whose mirror plane contains
the [001] axis. Similarly to the case of noncubic systems, the
even-parity CCROA is classified by the magnetic Laue class
for cubic point groups. We tabulate these classes as

m3̄, m3̄m, m3̄1′, m3̄m1′, m3̄m′. (38)

Every class contains the m⊥ or 2⊥ = Im⊥ symmetry-
forbidden CCROA regarding the [001] incidence. It follows
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FIG. 2. Motifs of materials with the cross-circular Raman optical activity (CCROA) denoted by CCY
X and parallel-circular Raman optical

activity (PCROA) denoted by PCY
X (X = ±, Y = s, a). ROA is classified by the space-inversion (I) and time-reversal (θ ) parities. For instance,

the θ -even and θ -odd parts, respectively, point to the variations of the left-handed circularly polarized light response to the right-handed
circularly polarized light (R→L, colored in red) and the right-handed one to the left-handed stimulus (L→R, colored in blue) in the identical
and staggered manner between Stokes (δω < 0) and anti-Stokes (δω > 0) peaks. Note that we suppress the difference stemming from the
Bose-Einstein distribution function [Eq. (20)]. (a) The even-parity and θ -even part (CC s

+, PC a
+ ) corresponds to the ferroaxial motif consisting

of the circulating electric polarizations (green-colored spheres are displacing charges, yellow arrow denotes the ferroaxial vector A). (b) The
odd-parity and θ -even part (CC s

−, PC a
− ) for the chiral motif formed by source or sink of ferroaxial vectors as ∇ · A [67,68]. (c) The even-parity

and θ -odd part (CC a
+ , PC s

+) for the magnetoaxial motif such as magnetization M (red-colored arrow) associated with the circulating electric
current colored in orange. (d) The odd-parity and θ -odd part (CC a

− , PC s
−) for the magnetic chiral motif represented by source or sink of

magnetization, ∇ · M.

that all the classes in Eq. (38) do not allow for the even-parity
CCROA.

The odd-parity CCROA for qi = [001] is classified by
the class enhanced by the twofold rotation perpendicular to
[001] or by n-fold rotation parallel to [001]. The obtained
classes are

m3̄m, 432, m3̄m1′, 4321′, m′3̄′m′, (39)

among which the composite-chiral (432), chiral (4321′), and
magnetic chiral (m′3̄′m′) cases imply CCROA.

Next, the incident direction is taken to be qi = [111]. The
odd-parity CCROA is similarly classified as that with qi =
[001]. After the enhancement of point groups with respect
to the [111] direction, we obtain the same series of classes
tabulated in Eq. (39). On the other hand, the even-parity
CCROA for qi = [111] differs from that for qi = [001] where
any magnetic Laue class of Eq. (38) does not possess the even-
parity CCROA. The m⊥ symmetry for the [111] incidence is
not present in the colorless (m3̄), gray (m3̄1′), and black-white
(m3̄m′) classes, and thereby CCROA is allowed in spite of
neither ferroaxial nor magnetoaxial anisotropy.

The obtained classification is summarized in Table III for
the even-parity case and Table IV for the odd-parity case.
Although we presented the symmetry analysis of CCROA,
the classification for PCROA is the same as that for CCROA.

The detailed analysis with the microscopic calculations is
presented elsewhere [69].

VI. DISCUSSION

In this work, we investigated the symmetry of cross- and
parallel-circular Raman optical activities and presented the
systematic classification. The classification is obtained by
the magnetic Laue class for the even-parity case and the
(magneto)achiral/chiral crystal class for the odd-parity case.
The result not only covers the cases identified in prior works
on the ferroaxial, magnetoaxial, and chiral materials, but it
also points out more diverse ROA, such as that from the mag-
netic chiral anisotropy. Moreover, the formulation is based on
the phenomenological arguments applicable to various kinds
of Raman-scattering processes, such as spontaneous and co-
herent stimulated Raman scatterings.

It is noteworthy that the antiunitary symmetry of solids is
closely tied to the relation between the Stokes and anti-Stokes
signals. Thus, the circular dichroism in the Raman scattering
provides us with a powerful diagnosis of the symmetry of the
target materials [70,71]. For example, it may be feasible to
identify the antiunitary symmetry of the exotic quantum phase
implied by the measurement of bulk properties [72,73]. The
useful property is in stark contrast to that of nonlinear opti-
cal responses such as photocurrent generation, in which the
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TABLE II. Classification of odd-parity CCROA (CC−) by achiral
(aC), chiral (C), magneto-achiral (m-aC), magnetic chiral (m-C),
and composite-chiral (c-C) classes. Each class is labeled by the θ -
even and θ -odd odd-parity CCROA; e.g., (×, �) denotes no θ -even
CCROA, but θ -odd CCROA allowed. The notations for M, G, g are
the same as those in Table I.

Class Type CCROA M G g

1̄ m-aC (×,×) 1̄ 1̄
1 c-C (�, �)∗ 1 1
2/m m-aC (×,×) m m

2/m 2/m
2 c-C (�, �)∗ 2 2
mmm m-aC (×,×) mmm mmm

2mm 2mm
222 c-C (�, �)∗ 222 222
3̄m m-aC (×,×) 3̄ 3̄

3m 3m
3̄m 3̄m

32 c-C (�,�) 3 3
32 32

4/mmm m-aC (×,×) 4̄ 4̄
4/m 4/m
4mm 4mm
4̄2m 4̄2m

4/mmm 4/mmm
422 c-C (�,�) 4 4

422 422
6/mmm m-aC (×,×) 6̄ 6̄

6/m 6/m
6mm 6mm
6̄2m 6̄2m

6/mmm 6/mmm
622 c-C (�,�) 6 6

622 622
1′ C (�, ×) 1′ 1 1
1̄1′ aC (×,×) 1̄1′ 1̄ 1
1̄′ m-C (×, �) 1̄′ 1 1̄
2/m1′ aC (×,×) 2/m1′ 2/m 1

m1′ m 1
2/m′ 1̄ 2

21′ C (�, ×) 21′ 2 1
2′ 1 2

2/m′ m-C (×, �) 2/m′ 2 1̄
m′ 1 m

mmm1′ aC (×,×) mmm1′ mmm 1
2mm1′ 2mm 1
m′m2′ m 2
m′mm 2mm 1̄
m′m′m 2/m 2

2221′ C (�, ×) 2221′ 222 1
2′2′2 2 2

m′m′m′ m-C (×, �) m′m′m′ 222 1̄
m′m′2 2 m

3̄m1′ aC (×,×) 3̄m1′ 3̄m 1
3̄1′ 3̄ 1

3m1′ 3m 1
3̄′m 3m 1̄
3̄m′ 3̄ m

321′ C (�, ×) 321′ 32 1
31′ 3 1
32′ 3 2

TABLE II. (Continued.)

Class Type CCROA M G g

3̄′m′ m-C (×,�) 3̄′m′′ 32 1̄
3̄′ 3 1̄

3m′ 3 m
4/mmm1′ aC (×, ×) 4′/m 2/m 4̄

4′/m′ 4̄ 1̄
4/m1′ 4/m 1

4̄1′ 4̄ 1
4̄2′m′ 4̄ m⊥

4/mm′m′ 4/m 2⊥
4′/mmm′ mmm 4

4̄′2′m 2mm 4̄
4′mm′ 2mm 4
4̄2m1′ 4̄2m 1
4mm1′ 4mm 1

4/mmm1′ 4/mmm 1
4/m′mm 4mm 1̄
4′/m′m′m 4̄2m 1̄

4221′ C (�, ×) 4′ 2 4
41′ 4 1

4′22′ 222 4
42′2′ 4 2⊥
4221′ 422 1

4/m′m′m′ m-C (×,�) 4̄′ 2 4̄
4/m′ 4 1̄
4m′m′ 4 m⊥
4̄′2m′ 222 4̄

4/m′m′m′ 422 1̄
6/mmm1′ aC (×, ×) 6̄1′ 6̄ 1

6/m1′ 6/m 1
6′/m 6̄ 1̄
6′/m′ 3̄ 6

6mm1′ 6mm 1
6̄2m1′ 6̄2m 1

6/mmm1′ 6/mmm 1
6′/mmm′ 6̄m2 1̄
6/m′mm 6mm 1̄

6̄m′2′ 6̄ 2⊥
6/mm′m′ 6/m m⊥

6̄′m2′ 3m 2⊥
6′/m′m′m 3̄m 2

6221′ C (�, ×) 61′ 6 1
6′ 3 2

6221′ 622 1
62′2′ 6 2⊥
6′2′2 32 2⊥

6/m′m′m′ m-C (×,�) 6/m′ 6 1̄
6̄′ 3 6̄

6/m′m′m′ 622 1̄
6̄′m′2 32 m⊥
6m′m′ 6 m⊥
6′m′m 32 m⊥

different antiunitary symmetry (e.g., θ or θ I symmetry) does
not give qualitative differences while it implies the distinct
mechanism for the response.

Tables I and II also show that both the θ -even and θ -odd
ROA can occur in a certain case, such as that belonging to
the colorless and axial Laue class (e.g., M = 6̄). It implies an
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TABLE III. Classification of even-parity cross- and parallel-
circular Raman optical activities (CC+, PC+) for the cubic systems.
Each class is labeled by the θ -even and θ -odd ROA regarding the
[001] and [111] incidence; e.g., ROA[001] = (×, �) denotes no θ -
even ROA but allowed θ -odd ROA for the incident light with qi =
[001]. Other notations are the same as those given in Table I.

Laue class ROA[001] ROA[111] M G g

(colorless Laue class)
m3̄m (×,×) (×, ×) 4̄3m 4̄3m

432 432
m3̄m m3̄m

m3̄ (×,×) (�, �) 23 23
m3̄ m3̄

(gray and black-white Laue classes)
m3̄m1′ (×,×) (×, ×) 4̄3m1′ 4̄3m 1

4321′ 432 1
m3̄m1′ m3̄m 1
m′3̄m′ 432 1̄
m′3̄m 4̄3m 1̄

m3̄1′ (×,×) (�, ×) 231′ 23 1
m3̄1′ m3̄ 1
m′3̄′ 23 1̄

m3̄m′ (×,×) (×, �) 4̄′3m′ 23 m
4′32′ 23 4
m3̄m′ m3̄ 4

intriguing situation that ROA is found in only the Stokes or
anti-Stokes peak since the θ -even and θ -odd parts contribute
to those peaks in a constructive or destructive manner. Such
“perfect” CCROA and PCROA may be realized in ferroaxial
materials under large magnetic fields or by combining with
the magnetoaxial order (e.g., ferromagnetic order). The phe-
nomenon may be feasible for the odd-parity case (see the
composite-chiral class in Table II).

The quantitative aspects of responses are an important is-
sue to be addressed. We expect that our symmetry analysis
will be useful for exploring significant CCROA and PCROA
with those microscopic calculations.
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