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For the realization of magnonic devices, spin-wave dispersions need to be identified. Recently, the time-

resolved pump-probe imaging method combined with the Fourier transform was demonstrated for obtaining the

dispersions in the lower-wavenumber regime. However, the measurement takes a long time when the sampling

rate is sufficiently high. Here, we demonstrated the fast acquisition of spin-wave dispersions by using the

compressed sensing technique. Further, we quantitatively evaluated the consistency of the results. Our results

can be applied to other various pump-probe measurements, such as observations based on the electro-optical

effects.

Spin waves are collective modes of spin precession in mag-

netically ordered materials. They are considered promising

information carriers in the field of magnonics, because they

can propagate over a long distance without Joule heating [1–

4]. Various devices such as spin wave switches [5], magnonic-

logic circuits [6, 7], spin wave-assisted recorders, [5, 8], and

low-magnetic-field sensors [9] require the spatial control of

spin waves.

The propagation characteristics of spin waves are manifested

in their dispersion relation. The higher-wavenumber regime

is governed by exchange interactions. In contrast, lower-

wavenumber spin waves are governed by magnetic dipole inter-

actions and are called magnetostatic waves [10–13]. Since the

magnetostatic waves are suitable for long-distance propaga-

tion, further investigation of dispersion relations in the lower-

wavenumber regime is indispensable [2].

Experimental techniques for acquiring dispersion rela-

tions of spin waves are being actively studied. For exam-

ple, inelastic neutron scattering [14, 15] and spin-polarized

electron energy loss spectroscopy [16] have been demon-

strated. However, these methods are suitable for observing the

higher-wavenumber region, rather than observing the lower-

wavenumber region of the dispersion.

Recently, a method called spin-wave tomography (SWaT),

which used time-resolved pump-probe measurements and the

Fourier transform to visualize the dispersion relations of spin

waves in the lower-wavenumber region was demonstrated

[17, 18]. Further, similar measurements in metals were per-

formed using the magneto-optical Kerr effect [19]. In the

SWaT method, a pump pulse is used to impulsively excite the

spin wave, and a probe pulse with a time delay is used to

detect the change in magnetization. By using an ultrashort

pulsed laser as a pump pulse, spin waves in a wide frequency

range can be excited simultaneously. Moreover, by focusing

the pulses, spin waves in a wide wavenumber range can be

excited. Wavenumber-resolved measurements can be made

by spatially scanning a sample with the focused probe pulses

[19] or imaging a large area without focusing the probe pulses

[17, 18]. Therefore, this method is useful for observing the dis-

persions over a wide region in the wavenumber (:)–frequency

( 5 ) space.

For observing the dispersion, a sufficiently high sampling

rate must be maintained for the time-resolved measurement.

This is because of the risk of folding noise due to the nature of

the discrete Fourier transform (DFT). As a result, the measure-

ment time can range from 10 hours to several days. To search

for novel photo-induced dynamics in innumerable materials,

the measurement time must be reduced.

In recent years, in experiments such as the terahertz imag-

ing [20], the NMR spectroscopy [21], and the scanning tun-

neling microscopy and spectroscopy [22], it has been shown

that a method called compressed sensing can reduce the mea-

surement time. Compressed sensing is a signal processing

technique that allows the estimation of a signal from a small

amount of data [23]. The signal estimation can be achieved by

the least absolute shrinkage and selection operator (LASSO)

method, a commonly used form of sparse regression [24].

In this letter, we demonstrate the fast acquisition of the spin-

wave dispersions by time-resolved pump-probe measurements

using compressed sensing. Moreover, we quantitatively eval-

uated the effect of reducing the number of measurements in

compressed sensing on the results of observations.

Our experimental setup is shown in Fig. 1. Our sample

was a single crystal of (111)-oriented 150 `m thick bismuth-

doped rare earth iron garnet (Gd3/2Yb1/2BiFe5O12) grown on

a gadolinium gallium garnet substrate by the liquid-phase epi-

taxy method. This magnetic material has been widely used for

investigating laser-induced spin dynamics due to its strong

magneto-optical coupling [25–31]. The magnetic field of

�ext = 2440 Oe was applied in the G-direction.

The light pulse for this pump-probe measurement was gen-

erated by a Ti:sapphire regenerative amplifier with a pulse

duration of 70 fs and a repetition rate of 1 kHz. A circularly

polarized pump pulse with a central wavelength of 1300 nm

was focused along a line parallel to the H-axis with a cylin-

drical lens with a fluence of 80 mJ cm−2. This pump pulse

produced an effective magnetic field in the I-direction via the

inverse Faraday effect [32], and the magnetization saturated

in the G-direction tilted in the H direction. Since the effective

magnetic field was instantaneous, the magnetization then be-

gan to precess in the H-I plane. The spin precession excited

along the line-shaped pumping spots propagated perpendic-

ular to the line via magnetic dipole interactions. A linearly

polarized pulse with a central wavelength of 800 nm was used

to probe the I-component of magnetization <I (r, C) via the

Faraday effect. The Faraday rotation angle was determined

from the angle of the analyzer, which minimized the intensity

of the transmitted probe pulse detected by a complementary
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FIG. 1. Setup of our pump-probe experiment. The circularly polar-

ized pump pulse was focused along a line by a cylindrical lens. The

linearly polarized probe pulse was irradiated on the entire sample

without focusing. HWP: half-wave plate, GTP: Gran Taylor prism,

and QWP: quarter-wave plate.

metal–oxide semiconductor (CMOS) camera. The time delay

between the pump and probe pulses was achieved by a variable

optical path difference using a delay stage. This was changed

in increments ofΔC = 0.01 ns. The maximum value of the delay

was set to ) = 3.60 ns. Then, we obtained the spatiotempo-

ral waveform of the spin wave. The waveform was integrated

along the H-direction to create a one-dimensional waveform

<I (G, C). The power spectrum that depicts the dispersion curve

in the :– 5 space was obtained by the two-dimensional DFT

of the spatiotemporal waveform. Further, micromagnetic sim-

ulations were performed to confirm our experimental results

(See supplementary data).

Let # = )/ΔC be the number of samples in the time domain

of the time-resolved pump-probe measurement. Owing to the

nature of the DFT, the frequency resolution of the spectrum

is Δ 5 = 1/) . In addition, according to Nyquist’s theorem,

the frequency components above 1/(2ΔC) cannot be observed,

and they appear as folding noise. Therefore, with regard to

reducing the measurement time, decreasing ) leads to a poor

resolution, and increasing ΔC increases the risk of the appear-

ance of folding noise.

Compressed sensing is a method of reducing # by taking

ΔC randomly, without changing) , and estimating the spectrum

from such data. Since ΔC is not a constant, the DFT does not

work well, resulting in spectral leakage. Instead, the spectrum

can be estimated by the LASSO method.

In the LASSO method, the spectrum estimation is treated

as an inverse problem. Let y = (H(C1), H(C2), · · · , H(C# ))T be a

waveform sampled with discrete time C8 (8 = 1,2, · · · , #) and

x = (0(l1), 0(l2), · · · , 0(l" ), 1(l1), 1(l2), · · · , 1(l" ))T

are the cosine and sine components of the spectrum for

discrete frequencies l 9 ( 9 = 1,2, · · · , "). The spectrum to

be estimated is the solution x̂ of the following minimization

problem

x̂ = arg min
x

{

1

2#
| |y− �x| |22 +_ | |x| |1

}

. (1)

Arg min{·} denote the argument of the minimum, an element

that minimizes the value in the brackets. | | · | |? is a term called

the ;? norm of the vector and is defined as | |x| |? =
(
∑

8 G
?

8

)1/?
.

The first term on the right-hand side corresponds to the method

of least squares. � is a # ×2" matrix, which corresponds to

the inverse Fourier transform:

�8 9 =

{

cos(l 9 C8) ( 9 = 1,2, · · · , ")

sin(l 9−" C8) ( 9 = " +1, " +2, · · · ,2").
(2)

The second term on the right-hand side in Eq. (1) imposes

a sparsity constraint on the solution x̂, and _ is a parame-

ter that adjusts the sparsity. We determined _ via five-fold

cross-validation [33]. In this method, the elements of y were

randomly divided into five data sets. Four of these sets were

used to obtain x̂, and the other set was used to evaluate the

waveform reproduced from x̂.

Generally, the output of the LASSO is not strictly unique,

and it depends on the random sampling [34]. Cosine similari-

ties (CS) were used to evaluate the consistency of results from

different dataset. The CS of two dispersions is given by

CS =
f ·g

|f | |g|
(3)

where f and g are vectorized data of the dispersion relations.

Here, f is the dispersion calculated by LASSO from the # =

361 data as the most ideal dispersion available from the present

data and g is the dispersion with reduced # to be compared.

For the DFT method, # was reduced by taking ΔC as 0.01 ns

multiplied by the divisors of 360 without changing ) . For the

LASSO method, random sampling with # = 10, 20, · · · , 360

was performed in ten ways each, and the mean and standard

deviation of the CSs were calculated. Moreover, the points

C = 0, 0.01, 3.60 ns were always sampled to maintain the

frequency resolution and the Nyquist frequency.

Figure 2(a) shows the entire spatiotemporal waveform of the

spin wave that we observed in our experiments with # = 361

at increments of ΔC = 0.01 ns. Figure 2(b) shows a waveform

dataset with # = 46 by taking ΔC = 0.08 ns, and Fig. 2(c) rep-

resents a dataset with # = 46 by taking ΔC at random. Further,

Figs. 2(d)–(f) shows the simulated waveforms correspond to

Figs. 2(a)–(c).

Figure 3 shows the dispersion relations corresponding to

the dataset shown in Fig 2. Figure 3(a) was obtained from

the data shown in Fig. 2(a) by DFT in the time and space

domain. Moreover, Fig. 3(b) was obtained by DFT from the

data shown in Fig. 2(b). The data in Fig. 3(c) were estimated

via the LASSO method instead of DFT in the time domain.

Figure 3(b) shows that the information was only available up to

6 GHz due to the insufficient sampling rate of the data in Fig.

2(b). Therefore, signals appearing to exhibit the dispersion

relation are folding noises bounded by the Nyquist frequency.

In Fig. 3(c), the same curve can be observed as in Fig. 3(a),
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FIG. 2. Spatiotemporal waveforms of spin wave observed by time-resolved pump-probe magneto-optical imaging method. (a) the whole data

with # = 361. (b) waveform sampled from (a) with # = 46 by taking ΔC = 0.08 ns. (c) waveform sampled from (a) at random in time domain

with # = 46. (d)–(f) waveforms simulated via MuMax3 corresponding to (a)–(c), respectively.

which implies that sufficient information could be extracted

from random sampling as shown in Fig. 2(c). Figures 3(d)–(f)

show the dispersion relations calculated from the data shown

in Figs. 2(d)–(f), the waveforms calculated by MuMax3. The

results of the simulation and the experiment were found to be

in good agreement.

The excited modes were the backward volume magneto-

static waves, which are mainly dominated by magnetic dipole

interactions, and they have a negative gradient of dispersion

[10, 12, 13]. The observed dispersion was in good agreement

with the lowest order mode shown in Fig. 3 with red lines,

and there were no peaks corresponding to the higher order

modes. This is because the higher order modes have nodes

in the thickness direction, and the Faraday rotation caused by

the higher modes was mostly cancelled out through the light

transmittance. The multiple branches seen in Figs. 2(a) and

(d) are due to the spin-wave echoes [35].

Figure 4 shows the #-dependence of the CSs between the

dispersion obtained from the data with # = 361 and the dis-

persions obtained from the data with reduced # . For the DFT

method, the points at # ≤ 46 correspond to the conditions

with ΔC ≥ 0.08 ns, and their CSs were almost zero because the

Nyquist condition was not satisfied. In contrast, the CSs of the

results of the LASSO method were above 0.90, even when #

was reduced to 50. Note that in the LASSO method, # was

reduced without decreasing the Nyquist frequency.

It is necessary to discuss in what systems LASSO can be

applied. Empirically, samplings 2–5 times the number of

sparse coefficients is sufficient to reconstruct the spectrum

using the ;1 norm [36]. Based on this, even for a system

with multiple modes, the number of required samples can

be roughly estimated from the number of predicted peaks.

Furthermore, for a system with strong damping, the linewidth

of the spectrum may be underestimated. This can be improved

by setting the sampling time range to ) ≈ 1/(U 50) where 50 is

the center frequency.

In conclusion, we demonstrated the fast acquisition of spin-

wave dispersion by using compressed sensing. Further, we

quantitatively evaluated the effects of random sampling on the

results of the LASSO method. This technique significantly

reduced the measurement time for acquiring the dispersion re-

lations. Moreover, this method of applying compressed sens-

ing to time-resolved pump-probe measurements is not limited

to the magneto-optical imaging of spin waves, to various ex-

periments based on pump-probe measurements, such as obser-

vations via the electro-optical effects and the refractive index

modulations.
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FIG. 3. (a)–(c) Dispersion relations obtained from spatiotemporal waveforms shown in Figs. 2(a)–(c). (d)–(f) dispersion relations obtained by

analyzing the simulated waveforms corresponding to Figs. 2(d)–(f). The red lines are the theoretical curves of the dispersion relation of the

backward volume magnetostatic wave. The horizontal axis is the wavenumber multiplied by the thickness of the sample.
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